Probiotik Ternyata Mampu Melawan Berbagai Virus Termasuk Infeksi Saluran Pernafasan

0
31

rubrik tangerang dot id -Dengan adanya virus corona (covid 19) yang masuk Indonesia, yang sampai saat ini belum ditemukan obat specifik maupun vaksinnya, maka masyarakat mulai waspada dan mulai mencari alternatif untuk menangkal sekaligus mengobati bila terpapar oleh virus tersebut, mulai dari mencari masker, desinfektan, sanitasi dan herbal

Sebenarnya ada satu produk yang lepas dari pantauan masyarakat yaitu probiotik. Probiotik mungkin bisa menjadi alternatif dalam melawan virus corona, meskipun belum ada penelitian yang valid antara hubungan pemberian probiotik dengan kesembuhan pasien yang terpapar oleh virus corona (covid 19)

Dikutip dari laman NCBI (National Center for Biotechnology Information) disebutkan bahwa beberapa strain probiotik terbukti signifikan dalam mengatasi infeksi yang disebabkan oleh virus.

Seperti diketahui bahwa baru-baru ini, risiko infeksi virus telah meningkat secara dramatis karena perubahan ekologi manusia seperti pemanasan global dan peningkatan pergerakan geografis manusia dan barang.

Sementara kemanjuran vaksin dan obat untuk penyakit menular dibatasi oleh tingginya tingkat mutasi virus, terutama, virus RNA.

Bumbu Halawa, bumbu sehat dengan Probiotik, Pertama di Indonesia

Untuk itu menjadi sangat penting untuk mencari beberapa alternatif untuk mengatasi virus tersebut, salah satunya adalah dengan mengetahui efektivitas beberapa probiotik dan paraprobiotik (probiotik yang disterilkan) untuk pencegahan atau pengobatan penyakit menular yang disebabkan oleh virus.

Hasil dari penelitian ini bisa dilihat dari tabel 1 sebagai berikut :

keterangan :

Text warna merah menunjukan keampuhan Probiotik dalam mengatasi infeksi yang disebabkan virus di respiratory tract (saluran pernafasan)

Table 1

Clinical efficacy of various major lactic acid bacteria for infectious diseases.

Strain Efficacy Refs.
Target Disease (Virus) Subjects Outcome
Lactobacillus casei  Upper respiratory tract infection Healthy athletes Reduced plasma CMV and EBV antibody titers [34]
Epstein–Barr virus (EBV)
Cytomegalovirus (CMV)
Upper respiratory tract infection Elderly people No significant difference in the incidence of respiratory symptoms and influenza-vaccination immune response [35]
Norovirus gastroenteritis Elderly people No significant difference in the incidence of Norovirus infection in elderly people [36]
Lactobacillus rhamnosus GG Experimentally induced Rhinovirus infection Healthy volunteers with intranasal inoculation of Rhinovirus (type 39) Decrease in the occurrence and severity of cold symptoms and number of subjects with Rhinovirus infection, but not significant [37]
Acute gastroenteritis (positive for Rotavirus or Cryptosporidium) 6M to 5Y children with acute gastroenteritis positive for Rotavirus or Cryptosporidium Significant decrease in repeated episodes of Rotavirus diarrhea. Improvement in intestinal function in children with rotavirus and cryptosporidial gastroenteritis [38]
Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 Common cold symptoms Elderly people (meta-analysis of two independent cohorts) Significant increase of natural killer cell activity and reduced risk of catching the common cold [39]
Lactobacillus paracasei ssp. paracasei, L. casei 431 Response to influenza vaccination Healthy adults with influenza vaccination Significant reduction of the duration of upper respiratory symptoms [42]
No significant difference in immune responses to influenza vaccination and incidence or severity.
Response to influenza vaccination Healthy adults with influenza vaccination Significant increases of vaccine-specific IgG, IgG1, and IgG3 in plasma as well as vaccine-specific secretory IgA in saliva in both probiotic-treated groups [43]
Lactobacillus paracasei MCC1849 (Morinaga) Antibody response against vaccination Eldery people with influenza vaccination No significant effect of non-viable L. paracasei MCC1849 [44]
Lactobacillus casei (DN-114 001) Incidence of acute diarrhea Children aged 6–24 months Significant reduction in the incidence and frequency of diarrhea. [45]
Incidence of common infectious diseases Children aged 3–6 years Significantly lower incidence rate of common infectious diseases in DN-114 group [46]
Lactobacillus plantarum L-137 Upper respiratory tract infection Healthy adults with high psycological stress Significant decrease in the incidence of upper respiratory tract infections [49]
Enterococcus faecalis FK-23 Hepatitis C virus Adult with anti-HCV antidodies positive Significant decrease of ananie aminotransferase No significant change in viral load [51]
Saccharomyces boulardii Acute rotavirus diarrhea Children (1-23 months) hospitalized for acute diarrhea by rotavirus Significant decrease in duration period of diarrhea and fever [52]
Bifidobacterium animalis (Bb12) Intestinal antibody responses to polio- and rota-virus in infants Healthy 6 week full-term infants (prospective study) Bb12 significantly increased fecal anti-poliovirus specific IgA, and increased anti-rotavirus specific IgA. [53]
Strain Efficacy Refs.
Target Disease (Virus) Subjects Outcome
Bifidobacterium lactis B94 Acute rotavirus diarrhea Children (5 months to 5 years) hospitalized for diarrhea by rotavirus Sgnificantly decrease in duration period of diarrhea [54]
Lactococcus lactis JCM5805 (L. lactis plasma) pDCs acitivity among PBMCs and symptoms of common cold Healthy adults L. lactis JCM 5805 activated pDCs among PBMCs and significantly reduced the risk of morbidity from the common cold [55]
Influenza-like illness and immunological response to influenza virus Healthy adults Significant decrease in the cumulative incidence days of “cough” and “feverishness”. Significant increase in IFN-α-inducible antiviral factor, interferon-stimulated gene 15 [56]
Influenza-like illness and immunological response to influenza virus Healthy adults Significant decrease in the cumulative incidence days of “sore throat” and “cough”. [57]
Significant increase in IFN-α mRNA in PBMCs
Anti-viral immune response and physical condition Healthy adults Significantly increased pDC activation and increased mRNA expression of ISG15 [58]
Significant decrease in the cumulative incidence days of cold-like symptoms
Influenza Infection School children Significant decreases in both the incidence rate and the cumulative incidence rate of influenza [59]
Anti-viral immune response to influenza virus Healthy adults Significant increase in secretary IgA in saliva
Significant prevention of decrease in phagocytic activity of neutrophil during common cold season

 

Belum terbukti probiotik dapat mengatasi infeksi yang disebabkan oleh virus corona, namun penelitian mengenai probiotik ini perlu dilanjutkan.

referensi :
1. Alan H., Ian B., Nancy C., et al. Improving the selection and development of influenza vaccine viruses – Report of a WHO informal consultation on improving influenza vaccine virus selection, Hong Kong SAR, China, 18-20 November 2015. Vaccine. 2017;35:1104–1109. [PMC free article] [PubMed] [Google Scholar]

34. Pimentel-Nunes P., Soares J.B., Roncon-Albuquerque R., Jr, Dinis-Ribeiro M., Leite-Moreira A.F. Toll-like receptors as therapeutic targets in gastrointestinal diseases. Expert Opin. Ther. Targets. 2010;14:347–368. [PubMed] [Google Scholar]

35. Gleeson M., Bishop N.C., Struszczak L. Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial. Eur. J. Appl. Physiol.
2016;116:1555–1563. [PMC free article] [PubMed] [Google Scholar]

36. Nagata S., Asahara T., Ohta T., et al. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. Br. J. Nutr. 2011;106:549–556. [PubMed] [Google Scholar]

37. Van Puyenbroeck K., Hens N., Coenen S., et al. Efficacy of daily intake of Lactobacillus casei Shirota on respiratory symptoms and influenza vaccination immune response: a randomized, double-blind, placebo-controlled trial in healthy elderly nursing home residents. Am. J. Clin. Nutr. 2012;95:1165–1171. [PubMed] [Google Scholar]

38. Kumpu M., Kekkonen R.A., Korpela R., et al. Effect of live and inactivated Lactobacillus rhamnosus GG on experimentally induced rhinovirus colds: randomised, double blind, placebo-controlled pilot trial. Benef. Microbes. 2015;6:631–639. [PubMed] [Google Scholar]

39. Sindhu K.N., Sowmyanarayanan T.V., Paul A., et al. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial.
Clin. Infect. Dis. 2014;58:1107–1115. [PMC free article] [PubMed] [Google Scholar]

42. Makino S., Sato A., Goto A., et al. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J. Dairy Sci. 2016;99:915–923. [PubMed] [Google Scholar]

43. Jespersen L., Tarnow I., Eskesen D., et al. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Am. J. Clin. Nutr. 2015;101:1188–1196. [PubMed] [Google Scholar]

44. Rizzardini G., Eskesen D., Calder P.C., et al. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12(R) and Lactobacillus paracasei ssp. paracasei, L. casei 431(R) in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2012;107:876–884. [PubMed] [Google Scholar]

45. Maruyama M., Abe R., Shimono T., et al. The effects of non-viable Lactobacillus on immune function in the elderly: a randomised, double-blind, placebo-controlled study. Int. J. Food Sci. Nutr. 2016;67:67–73. [PubMed] [Google Scholar]

46. Pedone C.A., Arnaud C.C., Postaire E.R., Bouley C.F., Reinert P. Multicentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int. J. Clin. Pract. 2000;54:568–571. [PubMed] [Google Scholar]

49. Hirose Y., Murosaki S., Yamamoto Y., Yoshikai Y., Tsuru T. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J. Nutr. 2006;136:3069–3073. [PubMed] [Google Scholar]

51. Oo K.M., Lwin A.A., Kyaw Y.Y., et al. Safety and long-term effect of the probiotic FK-23 in patients with hepatitis C virus infection. Biosci. Microbiota Food Health. 2016;35:123–128. [PMC free article] [PubMed] [Google Scholar]

52. Grandy G., Medina M., Soria R., Teran C.G., Araya M. Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect. Dis. 2010;10:253. [PMC free article] [PubMed] [Google Scholar]

53. Holscher H.D., Czerkies L.A., Cekola P., et al. Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: a randomized, double-blind, controlled trial. JPEN J. Parenter. Enteral Nutr. 2012;36:106S–117S. [PubMed] [Google Scholar]

54. Erdogan O., Tanyeri B., Torun E., et al. The comparition of the efficacy of two different probiotics in rotavirus gastroenteritis in children. J. Trop. Med. 2012;2012:787240. [PMC free article] [PubMed] [Google Scholar]

55. Sugimura T., Jounai K., Ohshio K., et al. Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells. Clin. Immunol. 2013;149:509–518. [PubMed] [Google Scholar]

56. Sugimura T., Takahashi H., Jounai K., et al. Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza
virus. Br. J. Nutr. 2015;114:727–733. [PubMed] [Google Scholar]

57. Shibata T., Kanayama M., Haida M., et al. Lactococcus lactis JCM5805 activates anti-viral immunity and reduces symptoms of common cold and influenza in healthy adults in a randomized controlled trial. J. Funct. Foods. 2016;24:492–500. [Google Scholar]

58. Suzuki H., Kanayama M., Fujii T., Fujiwara D., Sugimura H. Effects of the beverage containing Lactococcus lactis subsp. lactis JCM5805 on anti-viral immune responses and maintenance of physical conditions Jpn. Pharmacol. Ther.
2015;43:106–111. [Google Scholar]

59. Sakata K., Sasaki Y., Jounai K., Fujii T., Fujiwara D. Preventive Effect of Lactococcus lactis subsp. lactis JCM 5805 Yogurt Intake on Influenza Infection among Schoolchildren. Health. 2017;9:756–762. [Google Scholar]

60. Fujii T., Jounai K., Horie A., et al. Effects of heat-killed Lactococcus lactis subsp. lactis JCM 5805 on mucosal and systemic immune parameters, and antiviralreactions to influenza virus in healthy adults; a randomized controlled double- blind study. J. Funct. Foods. 2017;35:513–521. [Google Scholar]

@dai

LEAVE A REPLY

Please enter your comment!
Please enter your name here